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A fast computational method for fully nonlinear non-overturning water waves is
derived in two and three dimensions. A corresponding time-stepping scheme is de-
veloped in the two-dimensional case. The essential part of the method is a fast
converging iterative solution procedure of the Laplace equation. One part of the
solution is obtained by fast Fourier transform, while another part is highly nonlinear
and consists of integrals with kernels that decay quickly in space. The number of
operations required is asymptotically O(N logN), where N is the number of nodes at
the free surface. While any accuracy of the computations is achieved by a continued
iteration of the equations, one iteration is found to be sufficient for practical com-
putations, while maintaining high accuracy. The resulting explicit approximation of
the scheme is tested in two versions. Simulations of nonlinear wave fields with wave
slope even up to about unity compare very well with reference computations. The
numerical scheme is formulated in such a way that aliasing terms are partially or
completely avoided.

1. Introduction
Fully nonlinear models for water waves are employed to study various complex

wave phenomena. These include the important topic of nonlinear inviscid potential
flow with a free surface (recent reviews may be found in e.g. Tsai & Yue 1996
and Dias & Kharif 1999). A common drawback of the existing fully nonlinear
methods, however, is that the computational schemes are slow. This means that long
time simulations of wave fields with appreciable size are unrealistic. Although the
integration of the prognostic equations can be made fast, the bottleneck is the solution
of the Laplace equation which is required at each time step. Thus, a fully nonlinear
model for water waves can only be fast provided that the Laplace equation solver is
fast. Fully nonlinear and fast wave models that can be used to analyse in a realistic
way highly nonlinear wave phenomena, such as freak waves, steep transient waves
or steep irregular wave fields, are lacking (ISSC 2000). This is the motivation of the
present study where the primary focus is to derive a fast and robust Laplace equation
solver, and thereby a computationally fast model for fully nonlinear water waves.

Computationally fast fully or highly nonlinear methods exist, but they have vari-
ous drawbacks that limit their usefulness. The methods by Fornberg (1980), Balk
(1996) and Longuet-Higgins (2000), applying a conformal mapping, are efficient but
have the disadvantage that the spatial resolution becomes poor at the crest of steep
waves, where high resolution is required. Conversely, computational nodes become
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dense at the troughs. Further, the methods can only be used for one-dimensional
wave propagation. The high-order spectral methods outlined by Dommermuth &
Yue (1987), West et al. (1987) and Craig & Sulem (1993) are based on Taylor series
expansion about the mean water line (or about another reference level). They are
computationally efficient when the series converge. For steep waves, however, the
methods involve high-order derivatives and nonlinearities. The models then become
numerically unstable. The gain by the added terms is lost by the necessity of stronger
smoothing than for the low-order version of the method. In practice, few terms are
used (Dommermuth & Yue 1987; Yasuda & Mori 1994). For highly nonlinear waves
the methods do not converge. We note that slowly modulated waves may success-
fully be modelled by means of the nonlinear Schrödinger equation (NLS), where a
narrowbanded spectrum is assumed. The modifications by Dysthe (1979) and Trulsen
& Dysthe (1996) increase the bandwidth of the NLS somewhat, but the resulting
equations are generally not sufficient to provide a sound model of a realistic sea.

We here derive a novel rapid method for fully nonlinear non-overturning water
waves. The method is outlined for two and three dimensions. A fast Laplace equation
solver is obtained by means of integral equations. One part of the solution is obtained
by fast Fourier transform of the potential at the free surface and products between
this potential, or its horizontal derivatives, and the wave elevation. The other part
is highly nonlinear and consists of integrals that may be evaluated in a rapid way
since the integrands quickly decay in space. Computations for one-dimensional wave
propagation show that integration over a distance of one characteristic wavelength is
sufficient for these integrals, even for highly nonlinear waves. The resulting implicit
equation for the unknown function forms a basis for an iterative scheme with rapid
convergence. The number of operations required is asymptotically O(N logN), where
N is the number of computational nodes. Although any accuracy may be achieved
by a continued iteration of the equations, one iteration is found to be sufficient for
practical purposes. This forms an explicit approximation of the method which is
tested in two versions. Simulations with the schemes of rather steep waves with local
slope up to unity give the same results as reference computations. The computational
schemes are formulated in such a way that aliasing terms are partially or completely
avoided.

For simplicity, all derivations are made for water of infinite depth. The method
may, however, easily be extended to variable depth. Generalizations of the method
are further elaborated in the final part of the paper and in the appendices.

2. Two-dimensional motion
2.1. Statement of the problem

We first consider the two-dimensional problem of a fluid which is homogeneous,
incompressible and inviscid. The wave-induced motion is irrotational and the depth
is infinite. Let x, y and t be the horizontal, upward vertical and time variables, and
let η(x, t) be the surface elevation relative to the mean level y = 0. These assumptions
imply the existence of a velocity potential φ and a stream function ψ. These quantities
are linked, for −∞ 6 y 6 η, by the Cauchy–Riemann relations, φx = ψy , φy = −ψx.
The functions ψ and φy decay to zero for y → −∞. The surface impermeability gives
φy = ηt + φxηx at y = η. The pressure is either zero or prescribed at the surface,
and the Bernoulli equation gives gη + φt + 1

2
φ2
x + 1

2
φ2
y + p̃ = 0 at y = η, where g

is the acceleration due to gravity and p̃ the (given) pressure at the free surface. For
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non-overturning waves, this set of equations can be reformulated with quantities at
the surface only

ηt + ψ̃x = 0, φ̃t + gη +
1

2

φ̃x
2 − ψ̃2

x + 2ηxφ̃xψ̃x
1 + η2

x

+ p̃ = 0, (2.1)

where the tildes denote the functions at y = η. Other formulations are possible,
involving the normal derivative of φ, for example. These equations are the evolution
equations of η and φ̃, and can be integrated once ψ̃ is known. The harmonic functions
φ and ψ may be obtained in several ways. In two dimensions, the powerful theory
of complex functions may be used. Using the Cauchy integral formula split into real
and imaginary parts, the following equations are deduced (Baker, Meiron & Orszag
1982), in our notation

φ̃ =
1

π
−
∫ ∞
−∞

D(φ̃′ − η′xψ̃′)− ψ̃′ − η′xφ̃′
1 + D2

dx′

x′ − x, (2.2)

ψ̃ =
1

π
−
∫ ∞
−∞

φ̃′ − η′xψ̃′ + D(ψ̃′ + η′xφ̃′)
1 + D2

dx′

x′ − x, (2.3)

where φ̃ = φ̃(x, t), φ̃′ = φ̃(x′, t), etc. In (2.2) and (2.3), the function D = (η′−η)/(x′−x)
is introduced, where D decays according to |x′ − x|−1 for |x′ − x| → ∞ and D → ηx
for x′ → x. Equation (2.3), or equations that are similar, are commonly used to
determine ψ̃, given φ̃ and η. ψ̃ is then determined implicitly, and the equation is
typically solved iteratively with O(N2) operations. This is the intensive part of the
computations. An alternative, however, is to determine ψ̃ from equation (2.2). This
leads to a significantly faster iterative scheme, as we shall see, than working with
equation (2.3).

2.2. Reformulation of the boundary integrals

When the surface is horizontal, the integral equations are convolution products and
can therefore be computed very quickly via a fast Fourier transform, for example. For
a non-horizontal surface it is then tempting to reformulate these integrals, obtaining
convolution forms. Splitting (2.2) into singular and regular integrals, we obtain after
one integration by parts

φ̃ = −1

π
−
∫ ∞
−∞

ψ̃′

x′ − x dx′ +
1

π
−
∫ ∞
−∞

η′φ̃′x
x′ − x dx′ − η

π
−
∫ ∞
−∞

φ̃′x
x′ − x dx′

+
1

π

∫ ∞
−∞

[arctan(D)− D]φ̃′x dx′ +
1

π

∫ ∞
−∞

D(D − η′x)ψ̃′
1 + D2

dx′

x′ − x. (2.4)

Applying the Hilbert transform, i.e.

H{f} =
1

π

∫ ∞
−∞

f(x′)
x′ − x dx′, H−1 = −H,

equation (2.4) becomes

ψ̃ =H{φ̃}+ ηφ̃x +H{ηH{φ̃x}}

−H
{

1

π

∫ ∞
−∞

[arctan(D)− D]φ̃′x dx′ +
1

π

∫ ∞
−∞

D(D − η′x)ψ̃′
1 + D2

dx′

x′ − x
}
. (2.5)
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This is another equation for ψ̃. In (2.5), the singular integrals are convolutions
and can thus be computed quickly, with computational burden O(N logN). The
remaining regular integrals have kernels that decrease rapidly, as |x′ − x|−3 and
|x′ − x|−2, respectively. Therefore, integrations over [−∞, +∞] can be approximated
by integrations over a limited interval [x − λ, x + λ]. The parameter λ is chosen
in accordance with the precision required and depends on the wave characteristics
and not on the length of the computational domain (see below). Moreover, the
contribution on the right-hand side of (2.5) involving ψ̃, is cubic in nonlinearity,
whereas in equation (2.3) the corresponding term is quadratic. For non-breaking
waves, where cubic terms are smaller than quadratic terms, iterations with (2.5)
converge faster than iterations with (2.3).

For time-dependent simulations, the evaluation of ψ̃ is not needed, only ψ̃x is
required. It is thus preferable to compute ψ̃x directly. One differentiation and one
integration by parts of (2.5) yield

ψ̃x =H{φ̃x}+ ∂x{ηφ̃x}+ ∂x{H{ηH{φ̃x}}}

+H
{

1

π

∫ ∞
−∞

D2(D − ηx)φ̃′x
1 + D2

dx′

x′ − x −
1

π

∫ ∞
−∞

D(D − ηx)ψ̃′x
1 + D2

dx′

x′ − x
}
. (2.6)

An interesting feature of (2.6), is that its regular integrals involve ηx and not η′x. For
x close to a crest or a trough, ηx is close to zero. The kernels of the integrals in
(2.6) then decay as |x′ − x|−4 and |x′ − x|−3, respectively. This means that a truncated
integration is more efficient and accurate around crests and troughs than elsewhere.
This is in contrast with Taylor expansions and methods based on conformal mapping
which are poorer at wave crests.

2.3. Remarks

The rapid decay of the kernels is an essential reason for the efficiency of this
formulation. It is not the only one, however, as can be understood by also considering
the nonlinearities. For illustration we note that

lim
x′→x

D

1 + D2

D − ηx
x′ − x =

1

2

ηxηxx

1 + η2
x

.

Since we are considering water waves, the quantities involved are functions that
oscillate around zero. For deep water waves, ηx and ηxx are generally out of phase,
meaning that the product ηxηxx is small. In shallow water, however, both ηx and
ηxx may have large values at the same points. An example is the exponential decay
of a large solitary wave. In this case, integrals with faster decaying kernels may
be required for obtaining computationally efficient formulae. Such formulae can be
obtained by the method described in Appendix A, for example. During our numerical
experimentations at infinite depth, we never found the necessity to use such improved
formulae, however.

Analogue transformations of (2.3), i.e. in a way that the kernels of the regular
integrals decrease at least as |x′ − x|−2, give

ψ̃ =H{φ̃}+H{ηψ̃x} − ηH{ψ̃x}

+
1

π

∫ ∞
−∞

D(D − η′x)φ̃′
1 + D2

dx′

x′ − x +
1

π

∫ ∞
−∞

[arctan(D)− D]ψ̃′xdx
′. (2.7)

For this equation, of the form ψ̃ = F(ψ̃x), a functional iteration (see below) is
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numerically unstable. This is in contrast to equation (2.6) which is of the form
ψ̃x = F(ψ̃x) and is stable. However, equation (2.7) can be applied to obtain φ̃ when η
and ψ̃ are given.

Higher nonlinear terms in ψ̃ can be extracted from the regular integral and
written as convolutions, the remaining regular integrals having faster decreasing
kernels. However, these extra convolutions involve higher derivatives and are thus
not suitable for numerical computations. Similarly, the equation for ψ can be rewritten
in a form involving hyper-singular integrals, with faster decaying kernels. The practical
determination of these integrals requires the evaluation of the derivatives of ψ̃, and
thus these formulae are not suitable either.

We note that Ceniceros & Hou (1998), studying interfacial flows with surface
tension in two dimensions, also split their integral equation into a part with a
Hilbert transform and a remainder. Whereas their focus is to prove convergence of
a reformulated boundary-integral method, the important point here is to invert the
appropriate equation by applying Hilbert transforms. (In the three-dimensional case,
we invert the relevant equation using a Fourier transform.) This provides a better
platform for analysis and computations than using the classical formulation (2.3).

3. Successive approximations
An iterative scheme for the solution of (2.6) is initialized by the explicit quadratic

approximation

ψ̃2,x =H{φ̃x}+ ∂x{ηφ̃x}+H∂x{ηH{φ̃x}}. (3.1)

Applying one analytical iteration, keeping terms up to cubic nonlinearity, we obtain
an explicit cubic approximation, i.e.

ψ̃3,x,λ = ψ̃2,x −H
{

1

π

∫ x+λ

x−λ
D(D − ηx)
x′ − x H{φ̃′x} dx′

}
. (3.2)

If terms up to quartic nonlinearity are included, we obtain the following approximation

ψ̃4,x,λ = ψ̃2,x −H
{

1

π

∫ x+λ

x−λ
D(D − ηx)

1 + D2
(ψ̃′2,x − Dφ̃′x) dx′

x′ − x
}
. (3.3)

(Some simulations have shown that it is important to keep the denominator 1 +D2 in
the integral of (3.3) in order to obtain the desired accuracy, although this is formally
beyond quartic nonlinearity.)

Considerations on further successive approximations of equation (2.6) are presented
in § 3.3. At this point, we recall the primary focus of the investigation, namely the
search for rapid fully nonlinear water-wave simulations for moderately steep waves,
i.e. waves with |ηx| < 1, say. Keeping this in mind, we aim to test the explicit
solutions (3.2)–(3.3) of the Laplace equation. All simulations presented here indicate
that (3.2) predicts nonlinear wave evolution with very high accuracy when ηx is less
than about 0.5. The solution of the Laplace equation given by (3.2) is very rapid and
suitable for de-aliased simulations. In regions with larger values of ηx, say up to unity,
we find that (3.3) provides excellent predictions of the wave field, while (3.2) then
becomes somewhat inaccurate. Although (3.3) is computationally somewhat more
involved than (3.2), it is still explicit, relatively rapid and provides a basis for partially
de-aliased computations.
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Figure 1. Error variation of the truncated integration (equation (3.5)). - - -, k0x = 0;
– . –, k0x = π/4; —– k0x = π/2.

3.1. Truncated integration

We shall also find it sufficient to truncate the regular integrals in (3.2)–(3.3). Consider

I(x; λ) =H
{

1

π

∫ x+λ

x−λ
D(D − ηx)
x′ − x H{φ̃′x} dx′

}
. (3.4)

The effect of truncation may be estimated by applying the linear approximation of
a steady wave, i.e. ηx ' −ε sin k0x, φ̃x ' εc cos k0x, ψ̃x ' −εc sin k0x, c2 ' g/k0 and
ε = ak0, giving I(x;∞) ' 1

4
ε3c sin(k0x) and

EI (x; λ) ≡ I(x;∞)− I(x; λ)

max(|I(x;∞)|)
∼ 4 sin k0λ− 2 sin 2k0λ

π(k0λ)2
cos 2k0x sin k0x+ O(ε) as λ→∞. (3.5)

This shows that the integral decays according to 1/(k0λ)
2, to leading order in wave

slope. A further analysis, based on higher Stokes approximations, will (probably)
show a decay of EI as 1/(k0λ), but proportional (at least) to ε. The amplitude of
EI (x; λ) is visualized in figure 1. We observe that about 90% of the contribution to
the integral is obtained with an integration over one wavelength, i.e. λ = π/k0, and
98% for two wavelengths. The effect of a truncated integration is further discussed
in connection with the computations presented in § 5.

3.2. Computational remarks

The evaluation of the regular integral in (3.2)–(3.3) requires O(M × N) operations,
where M is given by the characteristic wavelength and N by the length of the domain.
This means that the total number of operations, for the calculus of (3.2)–(3.3), is
O(N logN,NM) ∼ O(N logN) for N →∞.

If more precision is required, the full equation (2.6) has to be solved. Starting
iterations with ψ̃2,x and a given λ (increased at each iteration), we therefore have a
fast Laplace equation solver. For long tank simulations the number of operations
remains asymptotically O(N logN).

We also remark that, with λ→∞, the approximated formula (3.2) can be expressed
in terms of convolutions only, i.e.

ψ̃3,x =H{φ̃x}+ ∂x{ηφ̃x}+H∂x{ηH{φ̃x}}
+ 1

2
H∂x{η2∂x{φ̃x}}+H∂x{ηH∂x{ηH{φ̃x}}}+ 1

2
∂2
x{η2H{φ̃x}}. (3.6)

Although ψ̃3,x and ψ̃3,x,∞ are equivalent analytically, the former, involving higher-order
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derivatives, is numerically more unstable than the latter. ψ̃3,x is therefore less suitable
for practical computations than ψ̃3,x,λ.

3.3. Rate of convergence of the functional iteration

The successive approximations of the full solution of (2.6) may be continued beyond
(3.1)–(3.3). For a convenient notation we introduce the linear operator J acting on
any function f by

J{f} = −H
{

1

π

∫ ∞
−∞

D(D − ηx)f′
1 + D2

dx′

x′ − x
}
, (3.7)

and introduce Qn+1 = Qn +J{Qn} (n = 0, 1, . . .), with

Q0 =H{φ̃x}+ ∂x(ηφ̃x +H{ηH{φ̃x}}) +H
{

1

π

∫ ∞
−∞

D2(D − ηx)φ̃′x
1 + D2

dx′

x′ − x
}
. (3.8)

Successive approximations of (2.6) are then obtained by

ψ̃x = Q0 +J{ψ̃x} = Q1 +J2{ψ̃x} = · · · = Qn +Jn+1{ψ̃x} = · · · , (3.9)

where J2{f} = J{J{f}}, etc. The error of the nth approximation is given by

en = ψ̃x − Qn = Jn+1{ψ̃x} = J{en−1}. (3.10)

The rate of convergence of the iteration procedure is indicated by the ratio |en+1/en|
and may be estimated from the linear approximation of a steady wave, giving

J{ψ̃x} = − 1
4
ε3c sin(k0x) + O(ε4). (3.11)

This means that |en+1/en| = ε2/4 to leading order in the wave slope, indicating rapid
convergence of the method. This result could be anticipated since J is cubic in
nonlinearity.

A corresponding estimate for equation (2.7) is |en+1/en| = 3ε/2, indicating a slower
convergence of a functional iteration in this case. We have found that this procedure
for (2.7) is numerically unstable, however, as already mentioned in § 2.3.

4. Implementation of unsteady numerical simulations
The fast Cauchy solver is one part of the numerics required for the simulation of

water waves. A method for solving the prognostic equations is demonstrated here.

4.1. Temporal scheme

The original system of equations (2.1) may be put into conservative form involving
dimensionless dependent variables. Applying one differentiation with respect of x, one
Fourier transform, and separating the linear and nonlinear parts, it can be rewritten
into a more suitable system

[
∂t −ω
ω ∂t

] F{ηx}
ω

g
F{φ̃x}

+

 0
ω

g
F{p̃x}

= −i k

 F{ψ̃x −H{φ̃x}}
ω

g
F
{
φ̃x

2 − ψ̃2
x + 2ηxφ̃xψ̃x

2(1 + η2
x)

} ,
(4.1)

where ω2 =g|k| andF denotes the Fourier transform (i.e.F{f}(k)=
∫ ∞
−∞ f(x) e−ikxdx).

The linear part of (4.1) is integrated analytically, while the nonlinear part is solved nu-
merically with a variable step-size eighth-order explicit Runge–Kutta scheme (Hairer,
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Nørsett & Wanner 1987). The scheme is therefore unconditionally (linearily) stable
and accurate. This high-order scheme provides relatively large time steps and is thus
a fast scheme with little accumulation of round-off error.

The spatial derivatives are computed in the Fourier space and the nonlinear terms
are calculated in the physical space. Both the Fourier and physical spaces are periodic
and discretized with a constant step.

4.2. Fully and partially ‘de-aliased’ computations

Several authors – Longuet-Higgins & Cokelet (1976), Dommermuth & Yue (1987),
Craig & Sulem (1993), among others – have observed the so-called sawtooth instabilities
in their numerical models. This important problem has been circumvented using
smoothing. For example, Craig & Sulem, following Dommermuth & Yue, used a
five-point moving average which is equivalent to a low-pass filter in Fourier space.
This method indeed damps the highest wavenumbers, but also the lower ones. This
is therefore not suitable for long-time simulations, since the energy of a wave field
decreases in time, and eventually vanishes. These sawtooth instabilities are due to
aliasing and, instead of smoothing, we employ the following method to prevent them.

Products of discrete functions in physical space are circular convolutions in Fourier
space (i.e. the spectra are periodic). De-aliased computations can be performed by
extending the spectra by zeros padding (Canuto et al. 1987, Chap. 3). The spectra must
(at least) be extended by a factor of 3/2 for quadratic nonlinearities, and by a factor
of 4/2 for cubic nonlinearities, etc. Water-wave equations involve non-polynomial
nonlinearities such as (1 + η2

x)
−1, on the other hand. This kind of nonlinearity does

not reduce to a finite number of convolutions in Fourier space. Therefore, whatever
the length of the zeros padding, the entire spectrum is polluted by aliasing if these
terms are computed directly.

If ψ̃x is computed with the cubic approximation (3.2), the calculus becomes fully
de-aliased by doubling the spectra (4-halves rule). For the temporal simulations,
fully de-aliased computations can hence be carried out using the 4-halves rule, set-
ting to zero the extra wavenumbers each time a cubic nonlinearity is computed.
The non-polynomial nonlinearity of the Bernoulli equation can be computed, with-
out aliasing, via some accurate polynomial approximations, such as Taylor expan-
sions, Chebychev polynomials, etc. As a simple illustration of the method, we can:
(i) compute φ̃2

x− ψ̃2
x + 2ηxφ̃xψ̃x and η3

x; (ii) set to zero the extra wavenumbers of these
quantities; (iii) compute

φ̃x
2 − ψ̃2

x + 2ηxφ̃xψ̃x
1 + η2

x

' [φ̃x
2− ψ̃2

x+2ηxφ̃xψ̃x]× [1−ηx×ηx+ηx×η3
x−η3

x×η3
x]; (4.2)

(iv) set to zero the extra wavenumbers of the quantity (4.2). The relative error of
(4.2) is less than 0.4% for ηx = 0.5. Many other polynomial approximations can be
employed. If more precision is required, higher-order polynomials must be used, but
the principle of the method remains the same.

If ψ̃x is computed with the (almost) quartic approximation (3.3), the calculus cannot
be fully de-aliased (at a reasonable cost). However, partially de-aliased computations
can be achieved using the 4-halves rule and setting to zero the extra wavenumbers
each time an almost cubic nonlinearity is computed. For example, to compute the
nonlinear term of the Bernoulli equation, we can: (i) compute A = φ̃2

x− ψ̃2
x + 2ηxφ̃xψ̃x

and B = 1 + η2
x; (ii) set to zero the extra wavenumbers of A and B; (iii) compute

A/B; (iv) set to zero the extra wavenumbers of the latter. This method is efficient
while the error due to aliasing is comparable to that due to round-off.
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Computational Nodes Per Wavelength
Formulae
giving ψ̃x 8 + 8 16 + 16 32 + 32 64 + 64

ψ̃2,x 1.47 1.47 1.47 1.47
ψ̃3,x,π/k0

0.24 0.15 0.15 0.15
ψ̃4,x,π/k0

0.20 0.10 0.11 0.11
ψ̃x,classical 2.29 0.02 0.00 0.00

ψ̃2,x 6.89 4.70 4.86 4.86
ψ̃3,x,π/k0

4.52 0.63 0.32 0.32
ψ̃4,x,π/k0

4.56 0.56 0.25 0.26
ψ̃x,classical 16.4 1.68 0.03 0.03

Table 1. Relative maximal error (%) between reference and approximated ψ̃x, for steady Stokes
waves, with ak0 = 0.21 (upper) and ak0 = 0.35 (lower).

The same partial de-aliasing method can be used when ψ̃x is given by the classical
formula (2.3). However, for periodic domains (see Appendix C, equation (C 1)),
the latter involves transcendental functions and requires numerical iterations. The
resulting ψ̃x is therefore much more aliased. This is another argument in favour of
the formulae derived from (2.6).

The anti-aliasing procedure preserves the spectra and can be viewed, instead of
smoothing, as a ‘radiation condition’ in Fourier space. With this method, no smoothing
or regridding appeared to be necessary during our numerical experimentations.

5. Numerical examples
5.1. Comparisons with an exact steady solution

We first compare our formulae with an exact solution of Stokes waves (Fenton 1988).
Using his program with 16 Fourier nodes, we obtain reference values of η, φ̃x and ψ̃x
for ak0 = 0.21 and ak0 = 0.35 (a denotes the wave amplitude and k0 the wavenumber).
We then obtain ψ̃x from (3.1)–(3.3) and (C 1) (the periodic version of (2.3), given in
Appendix C). Each computation is achieved applying the 4-halves rule. The relative
maximal deviation of the approximated ψ̃x from the reference, i.e. the ∞-norm, is
then evaluated. The results in table 1 illustrate that ψ̃3,x,π/k0

and ψ̃4,x,π/k0
provide

excellent approximations to the function. Both ψ̃3,x,π/k0
and ψ̃4,x,π/k0

are closer to the
reference function than ψ̃x obtained by the ordinary formulation (2.3) when the grids
are coarse, more specifically for 8 + 8 computational nodes per wavelength when
ak0 = 0.21 and 16 + 16 nodes when ak0 = 0.35. This illustrates the effect of aliasing
on the computations. The feature that the explicit approximations gain high accuracy
with coarse grids can advantageously be exploited in simulations of long wave fields.
The classical formulation converges to the reference solution for high resolution of
the wave field, as could be anticipated. The approximation ψ̃2,x is relevant only for
small ak0.

5.2. Wave generation

We also simulate waves generated by a pneumatic wavemaker starting from rest, com-
paring schemes using (2.3) and (3.2). We consider the generation of a monochromatic
wave – of wavenumber k0 and amplitude a – by a varying pressure with a Gaussian
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Figure 2. The transient leading part of a wave train. Pneumatic wave generation.
—–, ψ̃x,classical; −−, ψ̃3,x,π/k0

.

spatial distribution. For t < 0, p̃ is zero, while, for t > 0, we consider

ω

g
F{p̃x} = a

√
gk0 exp

(
k2

0 − k2

2k2
0

)(
k

k0

)3/2

sin(
√
gk0t). (5.1)

This pneumatic wavemaker has been tuned in order to transmit a maximal energy
to the wave in the far field (Wehausen & Laitone 1960, § 21). More details on this
simulation can be found in Clamond & Grue (2000).

The results show that the two methods are almost identical, where the differences,
measured by the root mean square, are less than 1% (figure 2). The use of ψ̃3,x,π/k0

gave
the results about fifteen times faster than by using equation (2.3), for a computational
domain of about thirty characteristic wavelengths. If a longer tank is used, the gain
increases. We note that the wave broke a few time steps later than the profile shown
in figure 2. This illustrates the high nonlinearity of the unsteady steep wave. (Similar
wave breaking is also observed in a physical wave tank.)

5.3. Wave–wave interaction

Modulated periodic waves are now simulated comparing ψ̃3,x,π/k0
, ψ̃4,x,π/k0

and ψ̃x
obtained by (C 1). Recent works on this subject (Dold & Peregrine 1986; Banner &
Tian 1998) find that either rapid onset of wave breaking or recurrence of the initial
state takes place depending on the magnitude of the initial wave slope. Our initial wave
field is similar to those studied by these authors, except that the wave slope is selected
somewhat larger, stimulating more rapid growth of the instabilities. Convergence of
the reference computations is then more certain than for weak nonlinearity, where a
simulation over long time is required.

The surface elevation of an exact Stokes waves, with initial wave slope ak0 = 0.22
and extended in a periodic wave tank being 8 wavelengths long, is perturbed by

εa cos

(
n+ m

n
k0x− π

4

)
+ εa cos

(n− m
n

k0x− π

4

)
, (5.2)

where in the simulations n = 8, m = 1 and ε = 0.105. A corresponding perturbation
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Figure 3. Wave–wave interaction after 16 periods. Initial train: Stokes wave + sinusoidal
perturbation. —–, ψ̃x,classical; −−, ψ̃3,x,π/k0
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Figure 4. Spectrum after 16 periods. —–, ψ̃x,classical; −−, ψ̃3,x,π/k0
.

is used for the velocity field (see Dold & Peregrine 1986 or Banner & Tian 1998
for further details about this simulation). The number of computational nodes per
wavelength is 32 + 32 (which means that wavenumber up to the 15th harmonic is
resolved).

The instabilities grow in time. After 16 wave periods the maximal wave slope |ηx|
has become 0.344 (figure 3). Simulations of the wave field using ψ̃3,x,π/k0

compare
favourably with the classical formulation (C 1). The spectrum F{η} of the surface
elevation further demonstrate the excellent correspondence between the two schemes
(figure 4). The good comparison of the spectrum illustrates that the two schemes
both capture the physical nonlinear development of the wavetrain. We note that the
solution with (C 1) exhibits weak aliasing errors for very high wavenumbers. This
effect is absent for the de-aliased simulations with ψ̃3,x,π/k0

, however.
The instabilities of the wave field continues to grow. Predictions of the wave profile
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Figure 5. Wave–wave interaction after 23 periods. —–, ψ̃x,classical; −−, ψ̃3,x,π/k0
; – . –, ψ̃4,x,π/k0
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Figure 6. Same as figure 5. —–, ψ̃x,classical; −−, ψ̃3,x,π/k0
, – . –, ψ̃4,x,π/k0

.

using ψ̃3,x,π/k0
, ψ̃4,x,π/k0

are visualized in figures 5 and 6 after 23 wave periods. Now the
maximal value of |ηx| has increased to 0.87. While ψ̃4,x,π/k0

and ψ̃x obtained by (C 1)
compare well for the whole wave field, ψ̃3,x,π/k0

shows an overall favourable agreement,
but is less good at the largest wave, however. We also evaluate the spectrum of the
surface elevation. This shows a pronounced transfer of energy from moderate to high
wavenumbers. The spectrum shows an almost perfect agreement between ψ̃4,x,π/k0

and
ψ̃x obtained by (C 1) (figure 7). The spectrum of ψ̃3,x,π/k0

compares well with the
more full schemes, for intermediate wavenumbers, but does not capture the energy
transfer to short wave modes satisfactorily. We further note that some deviation for
rather low wavenumbers also takes place. It is evident from the spectra that the
computations with ψ̃4,x,π/k0

and ψ̃x from (C 1) capture the physical development in the
wave–wave interactions of the wave field. The rather strong transfer of energy from
moderate to large wavenumbers hides the (small) aliasing errors in the computations
using ψ̃4,x,π/k0

and the classical ψ̃x (the schemes of the latter are not fully de-aliased).
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Figure 7. Spectrum after 23 periods. —–, ψ̃x,classical; −−, ψ̃3,x,π/k0
; – . –, ψ̃4,x,π/k0
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We note that the use of the formulae for ψ̃3,x,π/k0
and ψ̃4,x,π/k0

speed up the time
simulations by a factor of about hundred in these examples as compared to the
classical procedure. This is logical since, for such steep waves, the classical formula
requires many iterations. The computing time using ψ̃3,x,π/k0

is about 20% less than
using ψ̃4,x,π/k0

. We further note that there is not much difference in computing time
taking into account the denominator 1 +D2 in the formulae. An important difference
is that computations with ψ̃3,x,π/k0

may be completely de-aliased.
The simulations here indicate that we may use ψ̃3,x,π/k0

when max|ηx| is less than
around 0.35, and ψ̃4,x,π/k0

when max|ηx| is in the interval 0.35–0.9. We note that it is
not certain that the computations achieved with the classical ψ̃x are better than those
using ψ̃4,x,π/k0

, since the former induces more aliasing error.

6. Generalization to three dimensions
Generalization to three dimensions is then considered. In this case the Laplace

equation has to be solved in a way other than by using complex theory, since the
latter is limited to two-dimensional flows. Green’s theorem is applied for this purpose.
The y-coordinate is kept as above, while x = (x1, x2) are the two horizontal Cartesian
coordinates.

The prognostic equations in three dimensions are similar to those in the two-
dimensional case as given in equation (2.1) (see Tsai & Yue 1996). These equa-
tions update the velocity potential φ̃ at the free surface and the elevation η when the
(outgoing) normal velocity φn is known. The latter is obtained from the solution of
the Laplace equation when φ̃ and η are given on the free surface. As in the previous
paragraphs we assume that the depth of the water is infinite. From Green’s theorem
we have ∫∫

S

1

r

∂φ′

∂n′
dS = 2πφ̃+

∫∫
S

φ̃′
∂

∂n′
1

r
dS, (6.1)

where φ̃ = φ̃(x), φ̃′ = φ̃(x′), r = [R2 + (y′ − y)2]1/2, R = (x′ − x) and S denotes

the free surface. The element of the latter is given by dS =
√

1 + (∇′η′)2 dx′, where
∇ = (∂x1

, ∂x2
) denotes the horizontal gradient and dx = dx1dx2 is the element of



350 D. Clamond and J. Grue

horizontal surface, giving∫∫ ∞
−∞

V ′

(1 + D2)1/2

dx′

R
= 2πφ̃+

∫∫ ∞
−∞

φ̃′

(1 + D2)3/2

(
R · ∇′η′
R3

− η′ − η
R3

)
dx′, (6.2)

where R2 = R · R, V = φn
√

1 + (∇η)2 and D = (η′ − η)/R are introduced. We have
D ∼ R−1 for R →∞ and D → ηR for R → 0. We now exploit

R · ∇′η′
R3

− η′ − η
R3

= −∇′ ·
[
(η′ − η)∇′ 1

R

]
. (6.3)

By application of the Gauss theorem we may partially rewrite the last term in (6.2).
The modified and reorganized version of the equation reads∫∫ ∞

−∞
V ′

R
dx′ = 2πφ̃+

∫∫ ∞
−∞

(η′ − η)∇′φ̃′ · ∇′ 1
R

dx′ −
∫∫ ∞
−∞

V ′

R
[(1 + D2)−1/2 − 1] dx′

−
∫∫ ∞
−∞
φ̃′[(1 + D2)−3/2 − 1]∇′ ·

[
(η′ − η)∇′ 1

R

]
dx′. (6.4)

A decomposition V = V1 + V2 + V3 + V4 is then introduced, where V1, V2, V3, V4

satisfy, respectively, ∫∫ ∞
−∞

V ′1
R

dx′ = 2πφ̃, (6.5)∫∫ ∞
−∞

V ′2
R

dx′ =

∫∫ ∞
−∞

(η′ − η)∇′φ̃′ · ∇′ 1
R

dx′, (6.6)∫∫ ∞
−∞

V ′3
R

dx′ = −
∫∫ ∞
−∞
φ̃′[(1 + D2)−3/2 − 1]∇′ ·

[
(η′ − η)∇′ 1

R

]
dx′, (6.7)∫∫ ∞

−∞
V ′4
R

dx′ = −
∫∫ ∞
−∞

V ′

R

[
(1 + D2)−1/2 − 1

]
dx′. (6.8)

A Fourier transform is then applied to the equations. For the left-hand sides of
(6.5)–(6.8) we obtain

F
{∫∫ ∞

−∞

V ′j
R

dx′
}

=
2π

k

∫∫ ∞
−∞
V ′j e−i k·x′ dx′ =

2π

k
F{Vj} (j = 1, . . . , 4), (6.9)

where F denotes the two-dimensional Fourier transform, k2 = k · k, and where
we have exploited F{1/R} = (2π/k)e−i k·x′ . The transformed equation (6.5) becomes

F{V1} = kF{φ̃}, giving

V1 =F−1{kF{φ̃}}. (6.10)

The Fourier transform of (6.6) leads to F{V2} = −kF{ηV1} − ik ·F{η∇φ̃}, giving

V2 = −F−1{kF{ηV1}} − ∇ · (η∇φ̃). (6.11)

Further, from (6.7)–(6.8) we obtain

V3 =F−1

{
k

2π
F
{∫∫ ∞

−∞
φ̃′[1− (1 + D2)−3/2]∇′ ·

[
(η′ − η)∇′ 1

R

]
dx′
}}

, (6.12)

V4 =F−1

{
k

2π
F
{∫∫ ∞

−∞
V ′

R
[1− (1 + D2)−1/2] dx′

}}
. (6.13)
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We note that (the negative of) (3.1) corresponds to the one-dimensional version of
V1 + V2 given in (6.10)–(6.11). The kernels of the inner integrals of (6.12) and (6.13)
decay as R−4 and R−3, respectively. As in the two-dimensional formulation, these
integrals may be evaluated over a very limited region of the x-plane, still keeping
high accuracy. While V1, V2 and V3 are determined by known functions at the free
surface, V4 is determined implicitly. The latter may be determined iteratively as in
the two-dimensional case, where in the first iteration V is replaced by V1 + V2 + V3

on the right-hand side of (6.13). The iteration procedure may then be continued until
the desired accuracy is achieved. In practical computations, one iteration may be
sufficient however, as found in the two-dimensional numerical examples described
above.

7. Discussion
A novel fast procedure for computations of fully nonlinear non-overturning ocean

surface waves is developed. The method is derived in both two and three dimensions.
A corresponding computational scheme is developed in the two-dimensional case.
The essential part of the method is the rapidly convergent iterative scheme whereby
a solution of the Laplace equation is obtained. The number of operations required is
asymptotically O(N logN). In fact, the scheme is so fast that one iteration is sufficient
in practical computations, while still keeping high accuracy. This constitutes an explicit
approximation of the method which is tested out in two versions, i.e. the differentiated
stream functions ψ̃3,x,π/k0

and ψ̃4,x,π/k0
given by (3.2) and (3.3), respectively.

The algorithms involving ψ̃3,x,π/k0
may be put in a form where aliasing terms are

avoided. Smoothing or regridding are then not required. This is particularly advan-
tageous with regard to accurate wave simulations over long time. The simulations
presented here illustrate that ψ̃3,x,π/k0

(and ψ̃4,x,π/k0
) give the same results as reference

computations when the wave slope |ηx| is less than 0.35. For larger slopes, ψ̃4,x,π/k0

provides a valid description even when |ηx| is as large as unity. The scheme involving
ψ̃4,x,π/k0

is tested in a form where aliasing terms are partially avoided by extending the
Fourier spectra twice. Simulations of nonlinear wave–wave interaction, carried out
up to breaking, did not exhibit aliasing errors, however. No smoothing was applied.

The new schemes speed up the simulations by a large factor in the present examples
as compared to the classical procedure. Both ψ̃3,x,π/k0

and ψ̃4,x,π/k0
are found to give

more accurate results than the ordinary formulation when the computational grids
are coarse, because their algebraic simplicity involves fewer aliasing error. These are
interesting features which can be exploited in simulations of wave fields of appreciable
length over long time.

The method has promising potential with regard to several important and less
understood nonlinear wave phenomena. This includes the formation of freak waves,
a topic that receives considerable interest from both the scientific and engineering
communities. Further, fully nonlinear simulations of irregular waves including bi-
directionality and short-crestedness are of relevance to the offshore industry. Another
aspect is nonlinear evolution of wave groups.

For simplicity, all derivations are given for infinite water depth. The method is,
however, easily extended to a fluid with constant depth, as outlined in Appendix
B.1 for the two-dimensional case. Similar extension is straightforward also in three
dimensions. The method may be generalized to include a variable bottom with finite
slope (Appendix B.2) and to model overhanging waves (Appendix B.3).
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Appendix A. Arbitrarily fast decaying kernels
To compute ψ̃ (or ψ̃x), it is advantageous to first compute ψ̃xn and, consequently,

to obtain ψ̃ by integration. Numerical integrations are very fast and accurate when
computed with FFT. Moreover, as integrations have a natural smoothing effect,
formulae involving integrations are preferable to those involving derivatives. ψ̃xn can
be obtained from the generalized Cauchy integrals

∂nf

∂zn
=

(n− p)!
iπ

PV

∮
C

∂pf′

∂z′p
dz′

(z′ − z)n−p+1
(z ∈ C, 0 6 p 6 n), (A 1)

where z = x + iy and f(z) = φ + iψ. Taking p = 1 – in order to avoid η′x in the
integral – and after multiplication by (1 + iηx)

n, for infinite depth, (A 1) yields

(1 + iηx)
n∂nz̃ f̃ = − (n− 1)!

iπ
PV

∫ ∞
−∞

(
1

x′ − x +
i + D

1 + D2

ηx − D
x′ − x

)n
f̃′x dx′, (A 2)

with the notation ∂z̃ = (1 + iηx)
−1∂x, ∂

2
z̃ = (1 + iηx)

−1∂x[(1 + iηx)
−1∂x], etc. Equation

(A 2) shows that formulae with arbitrarily fast decaying kernels can be derived.
Indeed, extracting the linear part and after some integrations by parts, we obtain

H{f̃xn} = − i(1 + iηx)
n∂nz̃ f̃

−
n∑

m=1

n!(n− 1)!

m!(n− m)!π
PV

∫ ∞
−∞

(
i + D

1 + D2

ηx − D
x′ − x

)m
f̃′x dx′

(x′ − x)n−m
. (A 3)

All the kernels of the integrals in (A 3) decay as |x′ − x|−n, but at a crest they decay
faster.

The practical evaluations of the (hyper) singular integrals involved in (A 3) require

the calculus derivatives of f̃, but at most of order n. This is in perfect balance with
the left-hand side of the equation, and hence, the equation is well-posed for numerical
functional iteration.

The relation (A 3) shows that f̃xn is expressed as a function of its primitives. This
is the opposite of a Taylor expansion, which expresses a function with its derivatives.
Formulae like (A 3) are thus, in general, more suitable for numerical computations.

Appendix B. Generalized domains
The method outlined in § 2 is extended here to more general two-dimensional

problems. All the generalizations presented here can be combined to derive further
generalizations.

B.1. Horizontal bottom

With a horizontal bottom at y = −h, the Schwarz symmetry principle and the Cauchy
integral yield

φ̃ =
1

π
−
∫ ∞
−∞
−(x′ − x)(ψ̃′ + η′xφ̃′) + (η′ − η)(φ̃′ − η′xψ̃′)

(x′ − x)2 + (η′ − η)2
dx′

−1

π

∫ ∞
−∞

(x′ − x)(ψ̃′ + η′xφ̃′)− (2h+ η′ + η)(φ̃′ − η′xψ̃′)
(x′ − x)2 + (2h+ η′ + η)2

dx′. (B 1)
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Introducing D± = (η′ ± η)/(x′ − x), H = 2h/(x′ − x) and the operators

H±{f} =
1

π
−
∫ ∞
−∞

f′

x′ − x dx′ ± 1

π

∫ ∞
−∞

(x′ − x)f′

(x′ − x)2 + 4h2
dx′,

I{f} = f − 1

π

∫ ∞
−∞

2hf′

(x′ − x)2 + 4h2
dx′,

the equation (B 1) may be rewritten along the lines of the infinite depth case, giving

H+{ψ̃} = −I{φ̃}+H+{ηφ̃x} − ηH−{φ̃x}
+

1

π

∫ ∞
−∞

[arctan(D−)− D−]φ̃′x dx′ +
1

π

∫ ∞
−∞

D−(D− − η′x)ψ̃′
1 + D2−

dx′

x′ − x
+

1

π

∫ ∞
−∞

{
arctan

[
D+

1 +HD+ +H2

]
− D+

1 +H2

}
φ̃′x dx′

+
1

π

∫ ∞
−∞

[D+(2H + D+)− (1 +H2)(H + D+)η′x]ψ̃′

(1 +H2)[1 + (H + D+)2]

dx′

x′ − x. (B 2)

The operators can be computed and inverted easily in the Fourier space where

F{H±{f}} = i sgn(k)(1± e−2|k|h)F{f}, (B 3)

F{I{f}} = (1− e−2|k|h)F{f}. (B 4)

An analogous procedure can be derived with the Green function method in three
dimensions.

B.2. Variable bottom

If we consider a non-overturning variable bottom at y = −h − ζ(x), the Cauchy
integral applied at the free surface gives

φ̃ =
1

π
−
∫ ∞
−∞
−(x′ − x)(ψ̃′ + η′xφ̃′) + (η′ − η)(φ̃′ − η′xψ̃′)

(x′ − x)2 + (η′ − η)2
dx′

+
1

π

∫ ∞
−∞

(x′ − x)(ψ̄′ − ζ ′xφ̄′) + (h+ ζ ′ + η)(φ̄′ + ζ ′xψ̄′)
(x′ − x)2 + (h+ ζ ′ + η)2

dx′, (B 5)

where (φ̄, ψ̄) are the velocity potential and the stream function at the bottom. For a
fixed bottom, ψ̄ is an arbitrary constant, but φ̄ is unknown. An equation for φ̄ is then
obtained applying the Cauchy integral at the bottom, and considering (of course) the
conjugate part of the equation

ψ̄ =
1

π

∫ ∞
−∞

(x′ − x)(φ̃′ − η′xψ̃′) + (h+ ζ + η′)(ψ̃′ + η′xφ̃′)
(x′ − x)2 + (h+ ζ + η′)2

dx′,

−1

π
−
∫ ∞
−∞

(x′ − x)(φ̄′ + ζ ′xψ̄′) + (ζ ′ − ζ)(ψ̄′ − ζ ′xφ̄′)
(x′ − x)2 + (ζ ′ − ζ)2

dx′. (B 6)

Both relations (B 5) and (B 6) can be split, without difficulty, along the lines of (2.6)
and (B 2). We thus obtain a system of two coupled integrals, with fast decaying
kernels, giving ψ̃.

An analogous formula can be derived if, instead of a fixed bottom, we consider
a moving interface. The method can hence be generalized to stratified fluids with
several homogeneous layers.
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The method presented here is efficient while ζx is not too large, and a fortiori for a
non-overturning bottom. For such situations, the method presented below should be
preferred.

B.3. Overturning surface

To describe overturning waves, the use of x as an independent variable is no longer
efficient. Instead, we can take the arclength coordinate s as an independent variable
for a parametric description of the surface. Thus, considering x, η, φ̃ and ψ̃ as
dependent variables of s and t (implying dx =

√
1− η2

s ds), a generalization of the
Cauchy integral (2.2) can be written

φ̃ =
1

π
−
∫ ∞
−∞

D[(1 + x̃′s)φ̃′ − η′sψ̃′]− (1 +X)[(1 + x̃′s)ψ̃′ + η′sφ̃′]
(1 +X)2 + D2

ds′

s′ − s , (B 7)

where x(s, t) = s+ x̃(s, t), D = (η′ − η)/(s′ − s), X = (x̃′ − x̃)/(s′ − s), φ̃ = φ̃(s, t), φ̃′ =

φ̃(s′, t), etc. Writing the leading parts of the integral (B 7) as convolutions, we obtain

H{(1 + x̃s)ψ̃} = −φ̃−H{ηsφ̃}+H∂s{η(1 + x̃s)φ̃} − ηH∂s{(1 + x̃s)φ̃}

+
1

π

∫ ∞
−∞

(X +X2 + D2)η′sφ̃′ − (2X +X2 + D2)(1 + x̃′s)
(1 +X)2 + D2

φ̃′ ds′

s′ − s
−1

π

∫ ∞
−∞

Dη′sψ̃′ − (X +X2 + D2)(1 + x̃′s)
(1 +X)2 + D2

ψ̃′ ds′

s′ − s , (B 8)

where the Hilbert transform H is taken with respect to s. All the regular integrals in
(B 8) have kernels that decay as |s′ − s|−2. If faster decaying kernels are required, the
method explained in Appendix A can be employed.

Analogous formulae can be derived with other parametric representations of the
surface, such as the well-known Lagrangian description of motion. However, the
corresponding relative quantity x̃ of the later (i.e. the particle displacement) is large
in the presence of (local) currents. On the other hand, with variable arclength, this
quantity remains relatively small. It is therefore advantageous for the efficiency of the
method demonstrated in this paper.

Appendix C. Reference Cauchy integral
The classical Cauchy integral (2.3) is used as reference for numerical comparison

in the paper. For comparisons with (2.6), ψ̃x is computed directly since its evaluation
via ψ̃ is less efficient. After one differentiation with respect to x, one integration by
parts and for a 2L-periodic domain, the integral equation (2.3) becomes

ψ̃x =
1

2L
−
∫ L

−L

(φ̃′x − ηxψ̃′x) sin x
′ − x
L/π

+ (ψ̃′x + ηxφ̃
′
x) sinh

η′ − η
L/π

cosh
η′ − η
L/π

− cos x
′ − x
L/π

dx′. (C 1)

This integral is discretized with a constant step ∆x and is evaluated via the trapezium
method, which is of infinite order for periodic functions. At x′ = x, with respect to
the principal value, the discrete integrand is

∆x

π

[
φ̃xx +

ηxx

1 + η2
x

ψ̃x − ηxφ̃x
2

]
.
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The resolution of the corresponding linear system is achieved iteratively with an
SSOR algorithm.
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